Computer Science

AD-A274 124
Ll

J
Deferred Compilation.
The Automation of Run-Time Code Generation

Mark Leone Peter Lee
December 1993
CMU-CS-63-225

- DTIC
_ . \.. - =S°‘°x‘993

) \, o
v\ .7
Tl
L | et
- \. - Cal'neo']e
' . Mellon

93-31350

o

llll‘llllllllHHI | 93 12 27 078

ALN OFFICE 412 681~-5739 P.2

Deferred Compilation:
The Automation of Run-Time Code Generation

Meark Leone Peter Lee
December 1993
CMU-CS-93-225

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

This paper describes deferred compilation, an alternative and complement to compile-time program
analysis and optimization. By deferring aspects of compilation to run time, exact information
about programs czn be exploited, leading to greater opportunities for code improvement. This is
in contrast to the use of static analyses, which are inherently conservative.

Deferred compilation automates the translation of ordinary programs into native machine code
_that performs fast optimization and native-code generation at run time. Automation is obtained
through the use of a compile-time staging analysis, which determines the portions of & program
that may be safely and profitably compiled at run time. Fast run-time optimization js obtained
by trading space for time: compile-time specialization yields numerous run-time code generators,
each customized to optimize a small portion of the source program based on run-time information.
Implementation stratepies developed for a prototype compiler are discussed, and the results of
preliminary experiments demonstrating significant overall speedup are presented.

The authors’ electronic mail addresses axe Maxk.Leone8cs.cmu.edn and Poter.Lesbcs . cam. sdu.

This research was partially suppoxted by the National Science Foundation under grant #CCR-9057567. The views
and conclusions containcd in this document axe thosc of the authors and should not be interpreted as representing
the officisl policics, cither expressed or implied, of the National Science Foundation cr the US Government.

RY 2B "9 19:20 (5 MAIN OFF ICE 412 el-S57® Ll |

Keywords: Run-time code generation, deferred compilation, partial evaluation, specialisation,
binding-time analysis, staging transformation

e ' % Y L s el FP D G ol ST P g

1 Imtroductioa

Many compier optimisatien techaiques depend om static amalysis to detarmine invariamts about
a pregram’s run-time behavier As s result, & great deal of research has been invested in the
development of various approaches te static program analysis, particularly in the aress of datafiow
analysis, abstract intarpretation, and neastandard forms of type inference. Despite good progress,
such analyses tand 1o be excessively comservalive in practice, thus makiag it dificult for a compiler
to achisve thorough optimisstien of programs. This is, of course, a fundamental problem since
most aspects of program run-time bebavior are undecidable. Also, as a practical matter, further
commpromises ia precision must be made in order ‘o cope with the complexity and ineficiency of
maay asalysis algorithms.

Ax alternative approach is 10 defer at Jeast some of the analysis and optimisation (and therefore
also code gemeration) to run timme. While this does not avoid the fundamental problems of undecid-
ability and inefliciency, it does male possible the use of run-time values in improving code quality.
This is an old idea that has been applied in many different ways. For example, for regular expres-
sion search, Thompeon describes what essentially amounts to & compiler for regular expressions.
A program can inveke this compiler at run time to obtain machine code optimised for a specific
regular axpression (Tho88]. A similar approach hes also been spplied to bitblt [PLRSS] and to the
implementation of operating system services [Mas92, MP89). For general programming, Keppel,
Eggers, and Henry have studied several mamial methods for obtaining such “application-specific”
compilers, and they show that good results are possible for realistic C programs [KEH93).

There are other ways to improve program performance using run-time information. For exam-
ple, the compiler can arrange for programs to collect run-time data during development and test-
ing, and them use the collected profile information in optimising the code for final delivery [Wal91).
Koopman and Lee obtained improvements in the performance of a lasy functional language by
implementing graph reduction as self-modifying code [KLS92]. And, of course, there have been
countless other applications of self-modifying code.

In this paper, we report on our experience with a new approach to generating optimised code at
run time. We have implemented a prototype compiler, which we call FABius, that can automatically
compile a general program into RISC machine code that in turn generates optimized machine
code at run time. There are several notable examples of compilers for object-oriented languages
that perform aspects of compilation at run time, including the Smalitalk-80 system by Deutsch
and Schiffman [DS84) and the SELF compiler by Chambers and Ungar [CU89]. The approach
we have taken differs in 2 number of crucial ways. Perhaps most fundamentally, we compile s
functional programming language and hence are able to take advantage of previously developed
techniques for compiling and transforming functional programs, including aspects of offline partial
evaluation [JSS89, JGS93). This also facilitates the development of an sutomatic staging analysis
that allows code to be dynamically generated for any part of a program, rather than being restricted
to particular points such as method (procedure) invocations.

Other salient characteristics of our approach, which we term deferred compilation, are as follows:

o It is antomatic. No programming or programmer intervention is required. An automatic stag-
ing analysis determines those parts of the program to be subjected to run-time compilation,
with or without the guidance of the programmer.

o It is general Dynamic code generation is not limited to particular constructs or code tem-
plates. Furthermore, many standard compilation techniques, such as register allocation and

inlining, can be employed.

e A L ol s MRl ket Qi ml N Y S

o It is fast No general compilatian or processing of the source program occuss ot run time
Rather, cach part of the compiled code that performs run-time code ganesation is specialised
to oplimise and gemerate code for & small portion of the input pregram.

In preliminary experim-ats, we have found that the overhead of deferred compilation is often
quite small when compared to the performance gain Purthermore, we have encountered umique
design tradeoffs in comsideriag which aspects of optimisation and code gemeratioa should be per-
formaed statically and which should be deferred to run time. We see some encouraging signs that
deferred compilation can be practical, and find that there is much further work to be dome.

To introduce deferred compilatioa, we begin with & simple example that illustrates the basic
points. Then in Section $ we give an overview of some strategies and techniques for deferved
compilation. Our desire to keep the cost of run-time code generation as low as possible leads
to several important practical considerations. In Section 4 we describe some of the details of a
prototype implementation and present the results of preliminary experiments with the system.
This is followed by sections on the secondary costs of run-time code generation and the connections
between deferred compilation and partial evaluation.

2 An Example

A simple example illustrates some of the techniques employed by deferred compilation. Consider
a program that contains a (tail-recursive) definition of the exponentiation function:

povez (oxp, dase, accum) =
if exp » 0 then accum
olse pover(exp - 1, base, accum s base);

... pover (e, b, 1) ...
A conventional compilation of pover might yield the following machine code:!

pover: beq ri, r0, L1 it exp = 0 goto L1

sudb ri, ri, 1 ; OXp = exp - 1
ml r3, r3, r2 ; accum = accum ¢ base
jmp power ; goto power
LL: move rl, 3 ; Tesult » accum
Tot ; return

Suppose the program calls power repeatedly, but with the first argument changing more slowly
than the second argument. This would arise, for example, in a loop where each iteration computes
a new base and calls power without varying the exponent. One can also imagine a curried version
of pover which is applied to an exponent value and then passed to a mapping function. In such
situations, we say that the first argument is computed in an early stage and the second argument
is computed in a late stage.

A staging analysis can be used to identify such computation stages and label those subexpres-
sions in the program that depend ouly on the early arguments, as opposed to those that require
late argument values. In the case of just two stages, this labeling of early and late computations

'For simplicity of presentation, we assume an idealised RISC architecture with no delay slots; see Appendix A.

corresponds preciselv to a binding time anaivss and annotation (C.n93, MVNVY? | and in fact our

Meotatvpe o ampier .acorporates a tinding tine analvzer

Fartv computat.ons are compiied .n the nurmal wav, but late computations are transiated .nto
code that emats the cortesponding instructions at run time la this example. uince the exponent s
avaiiahie at an early stage. the cond.ionai test and subtraction express.ons are compiied normali.
hut the compuation of the muitiplication espression v deferred to run time In the vmpiest form
of deferred compiiation. we might obtaun the {ollowing code ?

pougen. Ddegq r1, 0, L1
sub el, r1, 1
emit mul rd, 3, r2
Jup povgea

el om1t sove ri., rl
ret

Note hat ine only dufference between pover and powges is that the muitiplication instruction
13 emutted \perhaps many tumes; wstead of being execu’ed, as i3 the instruction that moves the
accumuiator to the result register When cailed with exp = 5. poegen nmpietely unrils the 1hop
and generates code with all “constants” folded and all “dead code” eliminated

mul r3, 3, n
sul t3, r3, r2
sul r3, r3, r2
sul £, r3, r2
sul rl, rd, r2
BOVE ri, rd

Deferred compilatinn can be fast enough to pay off quickly. On a typical RISC architecture a
fixed-argument instruction can be ermutted in as few as four cycles (see Appendix A). Under thus
assumption the costs incurred by posgen are recovered after only three iterations of the run - time-
generated code when exp = §.

Making deferred compilation practical for a wide variety of programs is more of a challenge
than this simple example might imply. Here we see that run-time loop unrolling can be highly
profitable, but clearly there are Lmuts: if pursued too aggressively, the run-time overhead may
exceed the performance gain of the dynamically generated code. Another complication stems from
the fact that real-world programs often contain many more than the two stages of computation
exhibited by this example, a large number of which may benefit from run-time optimization. Thus,
a conventional binding-time analysis is not, in general, powerful enough for our needs.

The next section discusses these issues in more detail and proposes several strategies for ad-
dressing them. We also examine how a wider range of optimisations and code generation techniques
can be adapted to deferred compilation. The effectiveness of some of these techniques is examined
in the context of a more realistic example in Section 4.

?We use the pseudo-instruction emat to umplify the presentation. It ezpands ntn o sequence of nstructions that
sllocates space in & dynamc code segment. builds the representation of an nstruction from i1ts opcode and arguments,
and finaily writes the instruction o the allncated space. In thus example the arguments n the emutted wastruction
are fized; the first emit crestes “wwl 1), r), 12", reqardless of the current values of 2 and r).

3

3 Strategies for Deferred Compilation

The example above, though unrealistically simple, illustrates the basic elements of deferred com-
pirat.on. Fust, a stag:ng anaiysis is used to determine the stage at which each subexpression of
A program s computed. [n esser.-e, this identifies data and control dependencies in the program
ard reveass .n which stages run time optimization may be of benefit. Second, no general-purpose

rpiation accurs at run tume. [nstead, parts of the source program are compiled into special.
D .y ose cude generaturs (e g, posgen), each customized to optimizing and generating cnde based
Tl Lime vaLues,

31 Stages of Computation

et pie stages ot computation occur naturally in both functional and imperative programs. For

srar; e anen astrct curned flunction ¢ of tvpea — 3 — v is ap~'ied to an argument x, a closure
cearereri i d b aene ol ivpe 3« v wili typitally be constructe efore computations involving
additionas arguments proeed. It mav de profitabie to generate . .mized code for £(x) if it will

ne app.el Naky Lnes Jeferted compilation can therefore be viewed as an alternative 1o the
onvent..nas .mplementation of closures.?
\ el phetinenon acoars .o programs with nested loops. The outer loop index is alwavs
Teputed Del.re execul.nf nner ivops, and substantial benefits might be obtained by specializ-
Sk ORer Lcaps tuoils saiue at each ateration. More deeply nested loops lead to more stages of

mputat. n

Clmputaiion stages arise naturaily from uther programming language constructs. Macros in
viheme and uther .anguages are eariy computaiion stages that have been manually identified by
'he prograndner. 1.aacro expansion performs these computations before compiler optimizations are
sipoed In Standard ML the phase distinction property of the modules sublanguage guarantees
that arguments 1o functors are available at an earlier stage than arguments to functions HMM90].
Hence. delvrred compilation can be used to compile functors invo code that will generate optimized
function code at functor-application tume. Functor application is similar to the linking of object
code in conventional .anguages, the speed of which is not a high priority, so deferring highly
azgressive uptirruzations to thus stage appears practical HBHM93|. Link-time optimization has
a0 heen st idied hy Seivastava and Wall SW93'.

In practice, programmers often arrange for computations to be staged so that the costs of
rArlv computalions can be amortized over many late computations (CPW93]. For example, in
s Standard ML implementation of a network communications *ystem, Biagioni et al. [BHL93]
describe the structure of a send procedure with the type

send : connection -> message -> unit

The computation 's staged 0 that send analyzes the zomnection and then selects one of several
prssible message sending procedures (of type message -> unit). Since many messages are usually
tent nn a ronnection, this allows the cost of crnnection-specific nrocessing to be amort zed over all
of the message sends. Defcrred compilation can exploit such staging even if it is not explicit in the
program text.

'Appel haa made a wmular obeervation Appd?', and “all code® closures have been proposed by Feeley and
Lepaime FLI2

\We have restricted our attention to two computation stages in this paper in order to simplify the
presentaticn. [n general, however, programs exhibit many more stages, and deferred compilation
can in principle exploit an arbitrary number. Consider the case of a function of three arguments,
f{x,y.2).in which the argument x changes more slowly than y which in turn changes more slowly
than z. In this case it may be prcfitable to identify three computation stages (call them “early,”
“middle,” and “late™} and generate code for an fgen function that, given the first argument,
generates the code of cnother specialized code generator.

3.2 Staging Analysis

Frograms can have many stages of computation, and so a key problem is how to identify those
for which deferred compilation will be profitable. This is similar to the problem of deciding where
o inline proces »s in conventional compilation 'CHT91! and the automatic determination of
specialization point: during partial evaluation ‘JGS©3, BD91l. But as we have seen, syntactic
ivatures of prcgramming languages often provide clear indications of stages that can be usefully
subiected to deferred compilation. In some cases the use of programmer-supplied hints, such as
the use of curri~d function syntax, would also be useful.

Once useful program stages are identified, each subexpression of the program can be analyzed
to determine {approximately) to what stage it belongs. This is essentially a depenidency analysis: a
subexpression that only depends upon values computed at or before stage n computes a value that
also belongs to stage n. Although this is conceptually simple, approximations must be made so that
the stages of computations involving recursion can be finitely computed. Hence, this propagation
of sitaging information is best accomplished via a dataflow analysis or abstract interpretation.
Of coirse, since the analysis is necessarily approximate, early stages might be assigned to some
exnressions that are actually late, and vice versa. Qptimization opportunities are lost in the
‘ormer case, and unnevessary run-time code generation occurs in the latter case. Hence, refining
the precision of staging analysis is of funoamental importance.

Further technical details of the staging analysis problem are beyond the scope of this paper,
but we refer the reader to the literature on conventional binding-time analysis (J5589, Con93),
which is precisely a staging analysis for the special case of two stages. We have, for the time
being, restricted vur attention to two stages, and we use a conventional binding-time analyzer in
our prototype compiicr with good results (see Section 4). Note, however, that in programs where
there are more than two useful stages, a binding-time analysis forces distinct stages to be merged,
thus causing npportunities for run-time code generation to be lost. To gain moximum benefit
from deferred compilation, a generalization of binding-time analysis to an arbitrary number of
computation stages is required.

3.3 Limitations of Static Specialization

The examples mentioned earlier showed some of the circumstances in which computation stages
can be exploited by a compiler. We have yet to explain, however, why run-time compilation is
needed. To see this, consider the »lternative of using a source-to-source transformation instead
of deferred compilation. For the pover example, an effect similar to deferred compilation can he
nbtained by transforming power into the tollowing code:*

‘ath(i, (20, 81, . , 2a)) yrelds «,. the +'* element of o tuple)

5

wgen(exp) =
Pe snth (exp, (lambda (base) 1,

lambda (base) base,
lambda (base) base ¢ dase, k
lamzbda (base) base * base ¢ base,

»

This Jefinition of powgen can be obtained by creating a table of specialized versions of pover,
eah of which is created by choosing a value for exp from the set {0,1,...,k} and then applying a
partial evaluator [Bon93| to pover and exp. Similar transformations might also be obtained by ap-
plying staging transformation [JS86], program bifurcation {DBV91}, or procedure cloning (CHK93)].
In either case, highly optimized definitions of the specialized functions can be obtained, which can
then be compiled into high-quality machine code. Hence, one might expect this approach to be
useful in the same situations as deferred compilation.

However, there are two practical probleras in performing such a transformation automatically.
First of all, there is the matter of choosing the set of values on which to specialize. In powgen, for
example, there is no guarantee that the set {0,1,...,k} is a good one, since the range of exponents
that will be supplied at run time usuaily cannot be predicted. In fact, the specialization would not
in general be on simple integer values, but possibly on arbitrary data structures.

A second problem is that all of the specialized functions must appear in the transformed source
program. This incurs a serious cost in space usage, and ic wasteful since only a few of the functions
might be used in a single program execution. In practice, a relatively small limit must be placed
on the number of specialized functions created at compile time (represented by the constant k in
the above axample).

Hence, a key aspect of deferred coinpilation is to arrange for specialization to occur “on demand”
(or “just in time”). Furthermore, our desire to minimize the cost of run-time code generation leads
us to specialice the compilation process itself. In other words, we wish to avoid the overhead
«f manipulating source programs, which cne finds in a general compiler, and instead create code
generators Lhat are specialized to optimizing a fixed piece of code based on run-time values.

One can consider incorporating conventional compilation iechniques into specialized run-time
code generators. In fact, vne of the key design issues in deferred compilation is deciding how to
apportion the costs of optimization and code generation between compile time and run time. In
the next section we consider the particular case of register allocation.

3.4 Regisier Allocation for Deferred Compilation

Conventional compilzrs often use graph-coloring algorithms to assign variables to a limited number
of registers ‘Cha82, CH84]. An interference grapA is constructed, with nodes representing the
lifetime ranges of variables and edges indicating where these ranges intersect. Any K-coloring of
the interference graph is thersfore a valid assigrunent of the variables to K registers. This section
describes how such techniques can be applied when compilation is deferred.

3.4.1 Compiie-Time Register Allocation

We first consider a strategy for performing all register allocation at compile time. The significant
romplication is that different stages in a program can use the same set of registers because their
execution is not interleaved. For example, the powgen function presented in Section 2 can exploit

- ~ .

the fact that computations involving the exponent and base belong to different program stages by
<:signing those variables to the same register:

powgen: beq ri, 0, L1

sub ri, r1, ¢
emit mul r2, r2, r1
jemp pougen

L1: emit move ri, r2
ret

The usual notion of lifetime ranges does not capture this distinction, since the staging being
exploited is not explicit in the source program. For example, computations involving exp and base
are textually adjacent but belong to different computation stages. Conventional register allocation
algorithme may nonetheless be used for deferred compilation by simply modifying the construction
of the interference graph. A standard lifetime analysis can be conducted without regard to the
staging of the program, followed t. an analysis that determines the program stage to which each
variable belongs. During construction of the interference graph, edges are only added between
overlapping lifetime ranges of variables from the same program stage.

3.4.2 Run-Time Register Allocation

Although compile-time register allocation leads to fast run-time code generation, it suffers several
limitations. Inlining and loop unrolling may occur at run time, so an exact interference graph cannot
be constructed at compile time. Also, fixing the register assignment of a function at compile time
makes it difficult to inline in some contexts. For example, registers must be shuffled if the formal
and actual parameters are assigned to different registers, and so forth. If the number of contexts
in which a function will be inlined is small, compile-time code duplication combined with fixed
register assignments can be effective, but in general the space required will be prohibitive.

It is therefore desirable to perform run-time register allocation in sorne cases. Although reg-
ister allocation can be performed on a run-time intermediate representation of code, the cost of
processing such a representation is likely to pay off only when the generated code is executed many
times. A more efficient strategy is to perform register allocation at compile time but defer register
assignment until run time. A static approximation of the interference graph can be constructed as
described in the previous section, and the run-time code generators can be parameterized by some
representation of the desired register mapping. For example, powgen can perform run-time register
assignment as follows:

powgen: beq ri, 0, L}
sud ri, r1, ¢
omit mal r{r3), r(r3), z(z2]
ijmp povgen
LL: emit sove r{re], r(z3)
rot

This function takes four arguments: the value of exp (in r1), the numbers of the registers
assigned to base and accum (in r2 and r3), and the number of the destination register (in r4).
The emit pseudo-instruction used here determines the operands of the emitte:l instruction from
the contents of the specified registers. This takes more time than emitting instructions with fixed

7

operands, but the generated code will be more efficient in contexts that would otherwise require
the register shulling described above.

The representation of register mappings has a significant impact on the cost of run-time register
assignment. In the above example, register mappings are maintained in registers throughout early
stages of computation; instructions can be emitted quickly because no memory access is required
to determine their arguments. [t remains to be seea whether this savings will in general justify the
increased register pressure sutfered by early computations.

3.5 Specialized Run-Time Code Generators

Performing most of the work of register allocation at compile time can greatly improve the speed of
run-time code generation. Many other conventional optimization and code generation techniques
can be similarlv adapted to deferred compilation. This section gives a brief overview of our work
in this area.

We have zeneralized destination-driven code generation .DHB90! to produce specialized run-
time code generators (henceforth sir ply called generators) that do not manipulate any represen-
tation of the source program at run time. The algorithm is surprisingly straightforward because
it obevs staging annotations rather blindlv. As an expression is traversed, “early” nperations are
converted to machine code that performs the appropriate computation, while “late” operations are
compiied into code that emits the machine instructions that will eventually perform the computa-
tion.

As the example in Section 2 demonstrates, this simple technique produces highly effective
run-time optimizations. These optimizations are more powerful] that those found in many template
compilers XEH91, and eliminating the need for run-time processing of an intermediate representa-
lion ot tempiate can vield much faster code generation. Many conventional peephole optimizations,
>uch as strength reduction and instruction selection, can easily be incorpurated. For example, a
generator can avoid enutting a multipiication involving a value z from an earlier stage if it takes
the time to decermine whether £ = 1. The increased cost of such run-time optimizations must be
weighed against their benefit; a staging analysis that determines where to aggressively optimize
would facilitate such decisions.

A generator that emits native machine code in a single pass will be faster than one that builds
an intermediate representation, performs analysis and optimization, and then generates machine
instructions. l{owever, it can be difficult to produce good quality native code in a single pass.
Branches and procedure calls are pruoblematic because the destination may be code that has not
yet been compiled. Due to run-time inlining and loop unroiling the generator may not be able to
predict where the target code will eventually be located, so run-time tackpatching is necessary.
Span dependent instructions are challenging for similar reasons. Good instruction scheduling is
also diffic'dt to achieve in a single pass. Although a schedule can be “hard-wired” into generators
for straight-iine blocks, scheduling across basic-biock boundaries requires more general techniques.

We are also investigating the adaptation of inlining and loop unrolling algorithms to deferred
comgilation. [n conventional compilers such techniques yield increased opportunities for optimiza-
tion and improve the amortization of various computations, such as range check«. Cur preliminary
work suggests that similar benefits can be obtained by run-time inlining and loop vnrolling. It
can be diffcult to staticaily determine where to inline or how far to unroll a loop. Tne use of
run-time infrrnation to guide such dedisions may prove to be of significant benefit. We have aug-
mented the compile-time code generator described above with the pa.tial evaluation technique of
unfolding BD91, JGSI3!, a form of inlining.

In some contexts it is impractical to inline a function vet stil] desirable to optinize .t hases
upon the results of carlier computations. For example f a function s caile! at manv 4.Feren
nrogram points with the same value from an early computation, it mav be preferabie to grneraie o
single optimized version of the function rather than inlining its bodyv at each cal! «ite Thiv strater.
is commonly called specialization J5S89!, Specialization also permits run-time optirmized ¢ e oo,
be reused rather than regeneraied, which saves both space and time. The memauzation of run
iime code genrerators is a simpie way to achieve such reuse. Run-time memoization can he quite
expensive, particularlv when memoizing on structured data Mal33 . Nevertheless, preliminary
experiments indicate that it is worthwhile in some applications. The developmen. 7 ,tatic anu

dynamic strategies for controlling memoization is an interesting open problem.

4 Implementation

We have implemented a prototype compiler called Fapius® that incorporates many of the deferred
compilation strategies described in the previous section, as described below. The primarv goai
»f FasIUs is to reduce the run-time cost of code generation to . minimmum, at the cost of some
degradation in the quality of the generated code and an increase in the size of both the generating
and the generated code. This provides a baseline for the evaluation of compilers that perform more
aggressive rin-cime optimizations.

The FaBIUs source language is a rudimentary, strict, first-order functional language. Integers
and pointers to heap-allocated structures are the only run-time values; Fasits does not support
arravs or assignment. We have currently limited our attention to two-stage programs, so *hat :he
probiem of staging analysis becomes one of binding-time analvsis NN92 . The staging analvsis aiso
determunes how function calls should be treated by the code generator. An aggressive heuristic is
sedd to determine whicit function applications should be inlined: function calls in the branches of
“.ate” conditionals are specialized, but all other calls are inlined BD91). All analysis is automatic,
requiring no programmer intervention.

All register allocation and assignment occurs at compile-time; registers are assigned indepen-
dently to variables in early and late computations. In keeping with the focus on fast run-time code
generation, very few optimizatinns are applied at run time. The primary optimizations are “con-
stant™ propagation, “constant” folding, dead-code elimination, and function inlining. Loops are
expressed as tail-recursive functions, so inlining effectively yields loop unrolling. We have ignored
the issue of instruction scheduling for the moment; we assume an idealized RISC machine with
no delay siots (see Appendix A). Run-time code generation sccurs in a single pass; no intermedi-
ate repre-entation is constructed and no analysis or optimization is performed on code after it is
generated.

Our preliminary results are encouraging. As an example we consider vector-matrix tnultiplica-
tion, which is often used to implement matrix-matrix multiplication and is common in scientific
computing applications. Berlin and Weise have investigated improvements tu >imilar scientific code
through enmpile-time application of partial evaluation (BW90|. Vector-matrix multiplication is a
prime candidate for run-time code generation because t“e vec:or is fixed throughout the computa-
tion, and the loop that computes the inner product of the vector with a row or coiumn from the

*Quintus Fabius Maximus was & Roman general best known (or his defest of Hannubal in the Second Punic War.
His primary strategy was to delay confrontation; repeated small attacks eventually led to victory without a wmngle
lec.nive conthct

{

-
10300 ' Conventiocnal

/- Compilation

0 - -~
8000 4 ;I)cfcrrcd
7 Compilation
8000 - 4'
Cycles : !
1000 - 1
| !
i
2000 - :
. ‘;Cost of RTCG
;://_/g»« . : : ¢ (:ncluded above)
3
P s 12 16 20 24 28 2

Input Size (n)

Figure 1: Time to multiply a:: n-vector with an n x n matrix

matrix can be completely unrolted.® Such optimizations cannot usually be performed at compile
time, howevasr, hecause the sizes and contents of the vector and matrix are generally not statically
apparen’. The source code for the example is given in Appendix B, along with one of the run-time
code-generators produced by Fanius.

Figure 1 compares the total execution time of vector-matrix multiplication for varying input
sizes under conventional and deferred compilation. The inputs were vectors of length n and square
matrices of dimension n ceataining pseudo-random integers, and the execution times are given in
machine cycles (see Appeudix A). The “conventionally compiled” code was produced by disabling
the FaBIUS staging analysis and is of high quality. The dotted line represents the portion of time
spent generating code at run time; this time is included in the total exccution time of the code
produced by deferred compilation. As the figure demonstrates, deferred compilation can yield
significant improvement in overall execution time even for small problem sizes. In this case the
cost of run-iime code generation was recouped when multiplying a 16 element vector with a 16x16
matrix. The speedup increases linearly with larger input sizes (ignoring the secondary costs detailed
in Section 5}, yielding a speedup of greater than 20% when n = 32.

The amount of dynamically allocated data space was roughly the same under conventional
and deferred compilation. However, as expected, we observed a significant increase in code size.
The conventionally compiled code occupied just over 50 words; under deferred compilation the
size of the static code rose to nearly 275 words and the size of the run-time-generated code rose
linearly from 250 words to approximately 800 words as n ranged from 4 to 32. Increases of this
magnitude are to be expected when aggressively inlining, since we are trading space for time, but

" it remains to be seen whether such increases are manageable in larger applications. More extensive

experimentation s currently underway.

The arithmetic operations can also be optimused based on the contents of the vector, which will likely yiold
substantial speedups for computations involving 1parse data. The results presented here do not reflect such improve-
ments, since we have focused on {ast run-time code generation at the expense of some run-time optimisations.

10

_ o . . SN i e o e e e e

5 Costs of Deferred Compilation

The time required to optimizs and generate code at run time has been our primarv focus, but
the time/space tradeoff exploited by deferred compilation has son e secondary costs that must be
considered in practice.

Code-space reclamation can be a significant cost in programs that pursie aggressive run-tune
code generation. Conventional garbage collection techniques will likely <uffice, althongh “ome new
strategies mav prove profitable because dvnamicailv 2llocated code objects ditfer fiom data objerct.
in buth size and lifetime. Garbage collection might be complicated by the fact that run-time
generated code may contain embedded poincers to other data and code objects: this can occur if
pointers are inlined like other values during optimization.”

Run-time code generation and rnodification can interact poorly with modern memery fuer.
archies; 'KLS92'. Most modern architectures prefetch instructions into an instruction cachie and
many do not automatically invalidaie cache entries when memory writes occur, Cache Hushung

mav therefore be required when dynamically generating or modifving code Kepdl . The reguianty
of code-space allocation and initialization may simplify amortizing the cost of such operations.
For example, the instruction cache conld be flushed after code-space reclamation, and each newly
allocated ccde object could be aligned to a boundary that the instruction prefetch mechanism is
suaranteed not to have crossed while executing previousiy generated code, thus avoiding the inval
idation of cached instructions. An architecture with a write buifer or a write-back data cache mav
require additional work to ensure that recently written instructions are fetched propelv.

Another open question is how run-time code generation affects locality. Memory hierarchies
oifer substantial rewards to programs with highly localized data and instruction aceess patterns.
Deferred compilation reduces locality by creating numerous optimized code blorks instead of »xe
cuting a more general code block multiple times Run-time inlining can increase code size signifi-
cantly, thus decreasing locality. However, run-time dead-code elimination and other optimizations
can also reduce code size. Techniques adapted from partial evaluation MogRs mav also unprove
data locality by reorganizing data structures based on the staging of a program.

»
v
»
.
v

6 Deferred Compilation vs. Partial Evaluation

There are strong similarities betwcen deferred compilation and offline partial evaluation JGS93,
BD91!, but some significant differences deserve mention. A partial evaluator can be viewed as a
generalized interpreter that, given a program and a portion of its input, produces a specialized
residual program that accepts the remaining input and produces the desired result.

The correctness of a partial evaluator, called m-°z for historical reasons [JSS89!, is described
by the following equation, which specifies that the result produced by the residual program must
be the same as the result of the original program p when applied to the same inputs ([p] denotes
evaluation of a program p, yielding a function):

{[miz)(p,d\)])d: = [p}{di,d2)

Perhaps the most intriguing aspect of partial evaluation is self-application. If miz is imple-
mented in the lanzuage that it interprets, it can specialize itself to a particular source program p,

- W W W e T W VR R ERAEETEMEEETTERET T T EEEET LT

"These embedded pointers may be difficult to locate and update; for example on the MIPS a constant 32-bu
prnnter might be embedded into two instructions that contain 18-bit immediate valyes. Instruction reozdening duning
tun-time code generation can make the locations of these instructions unpredictable. :

11

A A A A S O T——rer——a .

yielding a program that generates & residual program when executed:
[Imiz](miz,p)]di = [miz](p,d1)

This is the essence of our tec'iniques for fast run-time code generation. [miz](miz,p) is a generating
extension that when given the first input value will produce an optimized residual program. A
generating extension is simply a specialized code generator, and it can be constructed at compile
time because it does not depend on any run-time data. A further self-application of miz yields the
stand-alone program, commonly called cogen, that performs the construction:

{{miz)(miz, miz)|p = [miz](miz,p)

In practice this approach has not been used to implement automatic run-time code generation.
Typicai partial evaluators Bon93, Conds] are intended for source-to-source program transformation
",ee Section 3.3) and produce residual programs in Scheme or a similar high-level language. The
generating extensions produced by self-application are therefore implemented in Scheme, and more
.mportantly, they generate Scheme code when executed. The use of such systems for run-time code
generation would therefore require general-purpose run-time compilation, which is too costly to be
~:dely applicable.

Impiementing a self-applicab'e partial evaluator that dir ctly generates machine code would
solve such problems.? Generating extensions would be direct! - executable and they would generate
native code when executed. To the best of our knowledge, no such partial evaluator has been
iescrihed or implemented ‘o date. One system that comes clcser than most to this goal is AMIX,
a sell-applicabie partial evaiuatcy for a first-order functional language whose target is an abstract
stack machine Hol88', AMIX's abstract machine code is a relatively high-level language, however,
1o} the ¢nst of compiling it to native code at run time would be substantial. The interpretational
overhead present in thus compilation cannot be statically elin ‘nated.

A promising alternative 1o self-application is the hand-impiementation of cogen [BW93;. In fact
ne can view Fasits as 8 hand-implemented cogen whose target language is RISC machine code.
[tus view is supported by our concentration on two-stage programs and our wholesale adoption
~f numerous techniques originally developed for partial eval iators, such as binding time analysis,
anfolding heuristics, and memoited specialization. However, the goals and strategies of Fasius,
such as one-pass native-code generation and stacic register allocation, diifer from those of any
existing formulation of cogen.

7 Conclusions

We have developed a new approach to compilation. [t provides an alternative to compile-time
analymr and optimmuzatiun by deferring aspects of optimisation and code generation to run time.
Automatic staging analysis is employed to detect program stages in which run-time optimization
may he Yeneficial. Fast run-time optimization and code generation is achieved by eliminating the
averhead f processing intermediate representations of source programs at run time. Preliminary
st 1eriments with a prototype compiler are promising, but we find that further experimentation is
reqquired for & full assessment.

*Nate that such & partial evaluator need net be wmpiementad in ite target langusge.

12

Acknowledgements

We are gratcful to Chris Stone, who provided valuable assistance in the implementation of Fasits,
and also to Ali-Reza Adl-Tabatabai, Chris Colby, Olivier Danvy, Greg Morrisett, Chris Okasaki,
Amr Sabry, Chris Stone, and David Tarditi for their time and effort in productive discussicns. We
are indebted tc Harry Bovik, who suggested that we use the term deferred instead of retarded

References

"App8T! Andrew W. Appel. Re-opening closures, Technical Report CS-TR-079-R7, Departmer*
of Computer Science, Princeton Uaiversity, 1937,

‘BD9Y’ Anders Bondorf and Olivier Danvv. Automatic autoprojection of recursive equations
with global variables and abstract data tvpes. Science of Computer Progammin,,
16(2):151-195, September 1991,

BHL33: Edoardo Biagioni, Robert Harper, and Peter Lee. Standard ML sigratures for a protocol
stack. Technical Report CMU-CS5-93-170, Computer Science Department, Carnegie
Mellon Universitv, October 1993,

.Bon93' Anders Bondorf. Similix manual, system version 5.0. Technical report, DIKU, Univer-
sity of Copenhagen, Denmark, 1993.

B9 Andrew Berlin and Daniel Weise. Compiling scientific code using partial evaluation.
IEEE Computer, 23(12):25-37, December 1990.

BW93, Lars Birkedal and Morten Welinder. Partial evaluation of Standard ML. Master's
thesis, DIKU, University of Copenhagen, Denmark, 1993.

'CHB84j rrederick Chow and John Hennesry. Register allocation by priority-b.sed coloring. In
Proceedings of the ACM SIGPLAN '8 Symposism on Compiler Construction, pages
222-232. SIGPLAN Notices, June 1984,

Chad2’ Gregory J. Chaitin. Register allocation and spilling via graph coloring. SIGPLAN
Notices, 17(6):98-105, June 1982,

‘CHK93! Keith D. Cooper, Mary W Hall, and Ken Kennedy. A methodology for procedure
cloning. Computer Langsages, 13(2):105-117, April 1993.

‘CHT91! Keith D. Cooper, Mary W. Hall, and Linda Torcson. An experiment with inline sub-
stitution. Software — Practice and Ezperience, 21(6):581-601, June 1991.

Consa Charles Consel. New insights into partial evaluation: The Schism experiment. In
H. Ganzinger, editor, ESOP '88, 2nd Eurvpean Symposium on Programming (Lecture
Notes 1n Computer Scrience, vol. 300), pages 236-246. Springer- Verlag, March 1988.

Conyl Charles Cunsel. Polyvanant hinding-time analysis for higher.order, applicative lan-

guages. In Prmceedings of the ACM Symposism on Partial Evaluation and Semantics-
Hased Program Manipslation, pages 145-154, June 1993.

13

Acknowledgements

We are grateful to Chris Stone, who provided valuable assistance in the implementation of Fapits,
and also to Ali-Reza Adl-Tabatabai, Chris Colby, Olivier Danvy, Greg Morrisett, Chris Okasaki,
Amr Sabry, Chris Stone, and David Tarditi for their time and effort in productive discussicns. We
are indebted te Harry Bovik, who suggested that we use the term deferred instead of retarded.

References
‘App87! Andrew W. Appel. Re-cpening closures. Technical Report CS-TR.-079-87, Departmer*
of Computer Science, Princeton University, 1987,
‘BDIY! Anders Bondorf and Olivier Danvv. Automatic autoprojection of recursive equations
with global varitables and abstract data tvpes. Science of Computer Progrmamming,
16(2):151-195, September 1991.
BHL93; Edoardo Biagioni, Robert Harper, and Peter Lee. Standard ML sigratures for a protocol
stack. Technical Report CMU-CS-93-170, Computer Science Department, Carnegie
Mellon Universitv, October 1993.
.Bon93: Anders Bondorf. Similix manual, system version 5.0. Technical report, DIKU, Univer-
sity of Copenhagen, Denmark, 1993.
BW9o Andrew Berlin and Daniel Weise. Compiling scientific code using partial evaluation.
IEEE Computer, 23(12):25-37, December 1990.
‘BW9I3; Lars Birkedal and Morten Welinder. Partial evaluation of Standard ML. Master’s
thesis, DIKU, University of Copenhagen, Denmark, 1993.
: ‘CHB84] frederick Chow and John Hennesey. Register allocation by priority-b_sed coloring. In
': Proceedings of the ACM SIGPLAN '8 Symposium on Compiler Construction, pages
222-232. SIGPLAN Notices, June 1984,
‘Cha82! Gregory J. Chaitin. Register allocation and spilling via graph coloring. SIGPLAN
Notices, 17(6):98-105, June 1982.
[CHK93] Keith D. Cooper, Mary W Hall, and Ken Kennedy. A methodology for procedure
cloning. Computer Languages, 19(2):105-117, April 1993.
‘CHT91] Keith D. Cooper, Mary W. Hall, and Linda Torcson. An experiment with inline sub-
stitution. Software — Practice and Ezperience, 21(6):581-601, June 1991,
.Con83;j Charles Consel. New insights into partial evaluation: The Schism experiment. In
H. Ganzinger, editor, ESOP '88, 2nd Eurvpean Symposium on Programming (Lectxre
Notes in Computer Science, vol. 300), pages 236-246. Springer- Verlag, March 1988.
Con93; Charles Consel. Polyvariant binding-time analysis for higher-order, applicative lan-

guages. In Pmceedings of the ACM Symposium on Partial Evaluation and 5emanhcs~
HBased Program Manspulation, pages 145-154, June 1993.

13

'KEH93]

Kepol’

KLS92

Malyl)

‘-11)858’

LPRY

NN92

PLRSS.

S3W 93l

Tho88’

Wal9l

David Keppel, Susan J. Eggers, and Robert R. Henry. Evaluating runtime-compiled
valu:-specific optimizations. Technical Report 93-11-02, Department of Computer Sci-
ence and Engineering, University of Washington, November 1993.

David Keppel. A portable interface for on-the-fly instruction space modification. In
Proceedings of the {th International Conference on Architectural Support for Program-
ming Languages and Uperating Systems, pages 86-95, April 1991,

Philip J. Koopman, Jr., Peter Lee, and Daniel P. Siewiorek. Cache behavior of combi-
nator graph reduction. ACM Transactions on Programming Languages and Systemas,
14(2):265-297, April 1992

Karoline Miaimkjer. Towards efficient partial evaiuation. In Proceedings of the Sympo-
stumm on Partial Fraluation and Semantics-Based Program Manipulation, pages 33 {3,
Association for Computing Machinery, June 1993,

Henry 'Massalin. Synthesis: An Efficient Implementation of Fundamental Operating
System Services. PhD thesis, Department of Computer Science, Columbia University,
1992.

Torben Mogensen. Partiallv static structures in a self-applicable partial evaluator.
In D. Bjorner, A F. Frshov. and N.D. Jones, editors, Partral Fraivation and iz
Computation, pages 125 347, Narth Hoelland, October 19%x,

Henry Massalin and Calton Pu. Threads and input, sutput in the svnthesis kernel.
In Proceedings of the 12th 4CM Symposium on Operaling Systems Principles, pages
191-201, December 1989,

Flemming Nielson and Hanne Riis Nielson Two-level functional languages. Cambrdge
Tracts sn Theoretical Computer Scien:cr, 34, 1992,

Rob Pike, Bart Locanthi, and John Reiser. Hardware/soltware trade offs for bitmap
graphics on the blit. Software — Practice and Ezperience, 15(2):131-151, February
1985.

A. Srivastava and David W ‘Wall. A practical system for intermodule code optimization
at link-time. Jowmal of Programming Langeages, 1{1):1-18, March 1993.

Ken Thompeon. Regular expression search algorithm. Communications of the Assoch-
aticn for Computing Machinery, 11(6):419-422, June 1968.

David W Wall Predicting program behavior using real or estimrated profiles In
ACM SIGPLAN 91 Conference on Prgreamrung Languege Design and Implementa-
tion, Tomnto, pages 59 7N, June 1991.

..
(L]

Appendix A Idealized RISC

The details provided in this appendix may assist interpretation of the example in Section 2 and the
reswts presented in Section 4. FaBiUs currently generates code for an idealized RISC machine that
closeiy resemnbles the MIPS architecture. The primary difference is a lack of delay slots: memory
access, by nck, and call instructions require only one cycle to complete. The idealized RISC also
supports a richer instruction set, including operations like move, push, and call; procedure linkage
uses the stack.

The emit pseudo-instruction is interpreted by our RISC simulator rather than being expanded
by the code generator, which facilitates the investigation of various peephole optimizations. The
timings described in Section 4 attribute a cost of four cycles and a size of four words to most
em1t instructions. Jn the MIFS, two cveles would be required to load the 32-bit representation
of a rixed-operand instruction into a register. Two additicnal cvcles are required to store the
nstruction and update a code-segment pointer; the pointer update fills the delay slot of the store
instraction. The cost of updating the pointer could he amortized over several emits, so we can
reduce the average cost If another instruction is available to fill the delay slot. Fast allocation of
codde space is a critical requirement. We assume a garbage-collected code segment with amortized
or hardware-supported overtlow checking and cache fushing.

Appendix B Extended Example

[his section derails the ~sctor matrix multiplication example presented in Section {. Although
Fuowe < does notaet sapport arravs, arealistic evaluation of the henefits of run-time code generation
car he made 1sing other data structures, so we have imp'emented vectors as linked lists and matrices
as .ot of vectors in row major order:

va-ault(v, a, a) *
1f % ° ni1l then reverse(a, nil}
else let prod s dotproed(v, car ®», nil)
in ve-sult(v, cdr m, cons(prod, a))

dotprodi /1, v2, @) »
1f ¢1 * ail then s
else dotprod{cdr vi, cdr v2, a * car vl * car v32)

The functions are impiemented using tal-recursion to reduce procedure call overhead; the accu-
TLALOr can be viewed as an explicit encoding of call frames, the reversal of which corresponds to
a swquence of procedure returns (The code for reverse has been omutted). vm-wult computes the
dot product of the specified veetor with each row of the given matriz and accumulates the results
a9t dotprod uimpiy sums the products of correspanding elements of two vectors.

Fasit s creates mema.zed code generators for both vm-mult and dotprod: previnnly generated
code {o- a particular vector ;¢ reused rather than regenerated An inhirung code . -ator 1s also
created for dotprod. it 1s .nviked by the memoized dotprod generator to gene:.. . code for ity
recursive tasl call comments added)

16

L9: beq r1, 0, L10 ;: i2 vl = nil goto L10
1d 2. (r1) ; x1 = car(vl)
1¢ r1, 4(r1) i v1 = edr(vl)
emit d 3, (1) ; emit “x2 = car(vl)*
emit 14 ri, 4(ry) ; emit "v2 » cdr{v2)"
emit move r4, (r2) ; emit "tmp = [x1]"
emit mul rd, r4, rd ; emit "prod = tmp ¢ x2*
emit add r2, r2, rd ; emit “a = & ¢ prod"
jmp LS ; goto L9

L10: emit move rl, 2 : emit "result = 5"
ot ; returm

The first argument vector is supplied in ri. The run-time-generated code expects the second
argument vector in rl and the accumulator in r2. If the first argument vector is {1,2,3], the
following code is generated at run time:

14 r3, (r1) ; 22 = car(v2)

1d r1, 4(r}) i v2 ® cdr(v2)

move r4, 1 ; tmp = 1

ml 3, z4, 13 ; prod = tmp * x2

add r2, r2, 3 ; a=a ¢ prod

14 3, (-1)

14 ri, 4(r}) ; ete.

move T4, 2

msul rd, =4, 23

add £2, 2,)

14 r3, (r1)

14 rt, 4(r1)

move re,)

el 3, z4, 1)

add tl, 2, £}

move rl, £ i Teswlt = g
17

